Question		on	Answer		Guidance
1	(a)		They are not fundamental particles because they consist of quarks	B1	Not: They can be sub-divided
	(b)		Any <u>two</u> from: electron / positron / neutrino / antineutrino	B1	Allow: muon / tau
	(c)	(i)	⁴⁰ ₂₀ Ca	B1	
			$_{-1}^{0}$ e + $_{\nu}^{-}$ (e) or electron + (electron) antineutrino	B1	Allow : $_{-1}^{0}\beta$ but not β^{-} or e^{-} for the electron
		(ii)	There is a decrease in mass	M1	
			Energy (released) given by $(\Delta)E = (\Delta)mc^2$	A1	Ignore Δm being referred to as the 'mass defect'
			or		
			Binding energy increases Energy (released) is the difference between the binding energies (of Ca and K nuclei)	M1 A1	Allow: binding energy per nucleon increases
		(iii)	$\lambda = \frac{0.693}{4.2 \times 10^{16}} / \qquad N = \frac{0.012}{100} \times \frac{4.5 \times 10^{-4}}{0.040} \times 6.02 \times 10^{23}$	C1	Allow : 1 mark for either $\lambda = 1.65 \times 10^{-17} \text{ s}^{-1}$ or $N = 8.127 \times 10^{17}$
			$A = 1.65 \times 10^{-17} \times 8.127 \times 10^{17}$	C1	
			activity = 13 (Bq)	A1	Note : Answer to 3 sf is 13.4 (Bq) Note : 1.3×10^3 (Bq) scores 2 marks; division by 100 omitted
			Total	9	

C	Question		Answer	Marks	Guidance
2	(a)		Observations: 1. Most of the alpha particles went straight / un-deflected through (the atom(s) / foil) (AW) 2. (Some of the) alpha particles were scattered / repelled / deflected through large angles (AW) Conclusions (QWC mark): 1 showed that most of the atom is empty space	M1 M1	Not 'reflected'
			and 2 showed the existence of small / dense / positive nucleus		Allow : The QWC mark even if 'alpha <u>reflected</u> at large angles' is mentioned in 2
	(b)	(i)	The aluminium nucleus has velocity / accelerates / moves to the right There is a repulsive force on the (aluminium) nucleus (to the right) / According to conservation of momentum the (aluminium) nucleus must move (to the right)	B1 B1	Allow: Moves away from the alpha particle
		(ii)	$8.0 \times 10^{6} \times 1.6 \times 10^{-19} = \frac{1}{2} \times 6.6 \times 10^{-27} \times v^{2}$ (Any subject) speed = 2.0×10^{7} (m s ⁻¹)	C1 A1	Note : Answer to 3 sf is 1.97×10^7 (m s ⁻¹) Allow 1 sf answer 2×10^7 (m s ⁻¹)
		(iii)	Q = 13e or $q = 2e$ or $F = \frac{Qq}{4\pi\epsilon_0 r^2}$	C1	Allow : $F = k \frac{Qq}{r^2}$, where $k = 9 \times 10^9$
			$270 = \frac{13 \times 1.6 \times 10^{-19} \times 2 \times 1.6 \times 10^{-19}}{4\pi \times 8.85 \times 10^{-12} \times r^2}$ (Any subject)	C1	Note : No credit for using Q and q as 13 and 2
			distance = 4.7×10^{-15} (m)	A1	

(Question		Answer	Marks	Guidance	
		(iv)	The strong force is attractive	M1	Allow:	
			·		The strong force is <u>repulsive</u>	M1
			Correct explanation of size / direction of resultant force	A1	Correct explanation of size / direction of resultant force	A1
			·		·	
			Total	12		

C	Question		Answer		Guidance
3	(a)		The (minimum) energy needed to separate / remove all the nucleons / protons and neutrons (to infinity)	B1	Allow: The energy released when (stationary) nucleons combine to form the nucleus Allow: The (minimum) energy required to break the nucleus into its (separate) nucleons Allow: binding energy = mass defect × speed of light ² Allow: 'Work (done)' in place of 'energy'
	(b)		BE per nucleon = $4.53 \times 10^{-12}/4$		
			BE per nucleon = 1.13×10^{-12} (J)	B1	Allow 2 sf answer of 1.1×10^{-12} (J)
	(c)		The helium nucleus has greater charge / The helium nucleus experience greater repulsive force	B1	
			Helium nuclei need to get <u>close</u> together (for the strong force to initiate fusion)	B1	
	(d)			C1	
			speed = $7.9 \times 10^5 \text{ (m s}^{-1}\text{)}$	A1	Allow : KE $\approx kT$; this gives an answer of 6.47 \times 10 ⁵ (m s ⁻¹)
			Total	6	

Question		1	Answers		Guidance
4	(a)	(i)	One proton / (same) charge / (same) element and (same) chemical property / one electron	B1	Allow (same) number of protons. Allow (same) number of electrons.
		(ii)	mass of nucleus < (total) mass of nucleons Energy must be supplied to the nucleus to free the nucle-	B1	
			ons / energy released when nucleons combine (to form the nucleus). $(\Delta)E = (\Delta)mc^2 \text{ and } (\Delta)E \text{ is the (binding) energy and } (\Delta)m$	B1 B1	Allow nucleus has binding energy.
			is the mass defect or the difference in mass.		
	(b)	(i)	${}^{1}_{0}$ n $\rightarrow {}^{1}_{1}$ p + ${}^{0}_{-1}$ e + $\overset{-}{\nu}_{(e)}$	B1,B1	Allow proton or ¹H or H⁺ or p <u>and</u> (electron) antineutrino.
		(ii)	(Average) time taken for half of the neutrons (in a sample) to decay.	B1	Note : Must have reference to 'half' and 'neutrons' Allow 'the time taken for the activity of neutrons to halve'.
	(c)	(i)	$F = \frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{4\pi\varepsilon_0 \times (10^{-14})^2}$	C1	Not $Q = q = 1$
			force = 2.3 (N)	A1	
		(ii)	$E = 7.0 \times 10^4 \times 1.6 \times 10^{-19} $ (= 1.12 × 10 ⁻¹⁴ J)	C1	
			$(E = \frac{3}{2}kT); 7.0 \times 10^{4} \times 1.6 \times 10^{-19} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$	C1	Allow any subject. Also, allow $E \approx kT$ since it is an estimate.
			temperature = 5.4×10^8 (K)	A1	Allow 1 sf answer.
		(iii)	Some nuclei will be travelling faster / have greater (kinetic) energy (to overcome electrostatic repulsion and hence cause fusion).	B1	Allow the pressures are high (enough to cause fusion). Not 'nuclei get close enough'.
		(iv)	$(\Delta E = \Delta mc^2);$ $18 \times 10^6 \times 1.6 \times 10^{-19} = \Delta m \times (3.0 \times 10^8)^2$	C1	Allow any subject
			change in mass = 3.2×10^{-29} (kg)	A1	Allow a maximum of 1 mark for 18MeV \pm 70 keV.
		(v)	Helium (nucleus) has greater charge / more protons.	B1	
			The (electrostatic) <u>repulsive</u> force (between the deuterium and helium nuclei) is greater (hence smaller chance of fusion).	B1	Do not award this mark if 'helium nuclei are moving slower' is also given as the reason for smaller probability for fusion.
			Total	17	